6 research outputs found

    Olfactory dysfunction in the pathophysiological continuum of dementia

    Get PDF
    Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer’s and Parkinson’s disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease

    Progressive signaling changes in the olfactory nerve of patients with Alzheimer’s disease

    Get PDF
    Olfaction declines with aging and appears to be a prodromal sign of cognitive decline in progressive neurodegenerative diseases. Nevertheless, very little is known about the pathophysiological changes underlying smell loss that may reflect early network dysfunction. A cross-sectional histoanatomical study was conducted on postmortem olfactory nerves of patients with increasing severity of dementia from mild cognitive impairment (MCI) to moderate and severe Alzheimer's disease. The olfactory bulbs and tracts show a prominent and progressive tauopathy in contrast to a weaker amyloid pathology localized to the glomerular region. Topological analysis of Notch signaling components reveals a transient increase in Jagged1 expression in mitral cells of the olfactory bulb of patients with MCI and a gradual decline onwards. Analysis of the olfactory tract reveals an abundance of corpora amylacea, which declines starting from the MCI stage. With the increasing severity of dementia, corpora amylacea are characterized by a gradual shift in cytoskeletal proteins, tau, MAP2 and glial fibrillary acid protein, as well as by a decrease in their Reelin and Jagged1 content. Our research indicates that the olfactory nerve undergoes early and sequential morphological and signaling alterations that correlate with the development of dementia suggesting that this structure may capture and propagate neuronal network imbalances to connected higher brain centers of the entorhinal cortex and hippocampus

    Effects of monoamines and antidepressants on astrocyte physiology: implications for monoamine hypothesis of depression

    Get PDF
    Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders affecting over one-fifth of the population worldwide. Owing to our limited understanding of the pathophysiology of MDD, the quest for finding novel antidepressant drug targets is severely impeded. Monoamine hypothesis of MDD provides a robust theoretical framework, forming the core of a large jigsaw puzzle, around which we must look for the vital missing pieces. Growing evidence suggests that the glial loss observed in key regions of the limbic system in depressed patients, at least partly, accounts for the structural and cognitive manifestations of MDD. Studies in animal models have subsequently hinted at the possibility that the glial atrophy may play a causative role in the precipitation of depressive symptoms. Antidepressants as well as monoamine neurotransmitters exert profound effects on the gene expression and metabolism in astrocytes. This raises an intriguing possibility that the astrocytes may play a central role alongside neurons in the behavioral effects of antidepressant drugs. In this article, we discuss the gene expression and metabolic changes brought about by antidepressants in astrocytes, which could be of relevance to synaptic plasticity and behavioral effects of antidepressant treatments

    Acute Effects of Focused Ultrasound-Induced Blood-Brain Barrier Opening on Anti-Pyroglu3 Abeta Antibody Delivery and Immune Responses

    No full text
    Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and hyperphosphorylated tau in the brain. Currently, therapeutic agents targeting amyloid appear promising for AD, however, delivery to the CNS is limited due to the blood-brain-barrier (BBB). Focused ultrasound (FUS) is a method to induce a temporary opening of the BBB to enhance the delivery of therapeutic agents to the CNS. In this study, we evaluated the acute effects of FUS and whether the use of FUS-induced BBB opening enhances the delivery of 07/2a mAb, an anti-pyroglutamate-3 Aβ antibody, in aged 24 mo-old APP/PS1dE9 transgenic mice. FUS was performed either unilaterally or bilaterally with mAb infusion and the short-term effect was analyzed 4 h and 72 h post-treatment. Quantitative analysis by ELISA showed a 5–6-fold increase in 07/2a mAb levels in the brain at both time points and an increased brain-to-blood ratio of the antibody. Immunohistochemistry demonstrated an increase in IgG2a mAb detection particularly in the cortex, enhanced immunoreactivity of resident Iba1+ and phagocytic CD68+ microglial cells, and a transient increase in the infiltration of Ly6G+ immune cells. Cerebral microbleeds were not altered in the unilaterally or bilaterally sonicated hemispheres. Overall, this study shows the potential of FUS therapy for the enhanced delivery of CNS therapeutics

    Systemic Inflammation Causes Microglial Dysfunction With a Vascular AD phenotype

    Get PDF
    Background: Studies in rodents and humans have indicated that inflammation outside CNS (systemic inflammation) affects brain homeostasis contributing to neurodevelopmental disorders. Itis becoming increasingly evident that such early insults may also belinked to neurodegenerative diseases like late-onset Alzheimer's disease (AD). Importantly, lifestyle and stress, such as viral or bacterial infection causing chronic inflammation, may contribute to neurodegenerative dementia. Systemic inflammatory response triggers a cascade of neuroinflammatory responses, altering brain transcriptome, cell death characteristic of AD, and vascular dementia. Our study aimed to assess the temporal evolution of the pathological impact of systemic inflammation evoked by prenatal and early postnatal peripheral exposure of viral mimetic Polyinosinic:polycytidylic acid (PolyI:C) and compare the hippocampal transcriptomic changes with the profiles of human post-mortem AD and vascular dementia brain specimens. Methods: We have engineered the PolyI:C sterile infection model in wildtype C57BL6 mice to achieve chronic low-grade systemic inflammation. We have conducted a cross-sectional analysis of aging PolyI:C and Saline control mice (3 months, 6 months, 9 months, and 16 months), taking the hippocampus as a reference brain region, and compared the brain aging phenotype to AD progression in humans with mild AD, severe AD, and Controls (CTL), in parallel to Vascular dementia (VaD) patients’ specimens. Results: We found that PolyI:C mice display both peripheral and central inflammation with a peak at 6 months, associated with memory deficits. The hippocampus is characterized by a pronounced and progressive tauopathy. In PolyI:C brains, microglia undergo aging-dependent morphological shifts progressively adopting a phagocytic phenotype. Transcriptomic analysis reveals a profound change in gene expression throughout aging, with a peak in differential expression at 9 months. We show that the proinflammatory marker Lcn2 is one of the genes with the strongest upregulation in PolyI:C mice upon aging. Validation in brains from patients with increasing severity of AD and VaD shows the reproducibility of some gene targets in vascular dementia specimens as compared to AD ones. Conclusions: The PolyI:C model of sterile infection demonstrates that peripheral chronic inflammation causes progressive tau hyperphosphorylation, changes in microglia morphology, astrogliosis and gene reprogramming reflecting increased neuroinflammation, vascular remodeling, and the loss of neuronal functionality seen to some extent in human AD and Vascular dementia suggesting early immune insults could be crucial in neurodegenerative diseases

    Olfactory dysfunction in the pathophysiological continuum of dementia

    No full text
    corecore